

Department of Mechanical Engineering

Powertrain & Vehicle Research Centre

Airpaths for Future Diesel Powertrains: Opportunities and Challenges

Dr Richard Burke
Senior Lecturer in Mechanical Engineering

Introduction – Why boost an engine?

Engines are efficient at high load

- Drive for reduced Fuel Consumption
 - Shift high efficiency region towards lower torques
 - Smaller engines do this by reducing overall friction

Replace big engines...

With small ones

Downsizing Examples

■ Ford 1.0L Ecoboost

Replaced 1.6L

Ultraboost 2.0L

Replaced 5L V8

Boosting Challenges

Boosting System Requirements

- Requirements of a future Diesel airpath
 - Emissions
 - Fuel economy
 - Transient response
 - Electrification
 - Thermal management
 - All in real world operating conditions

Contents

Boosting Technology

Modelling techniques

Experimental techniques

Conclusions

Contents

Boosting Technology

Modelling techniques

Experimental techniques

Conclusions

Boosting Technologies

VG Turbine (multiple turbines)

Multi-stage turbocharging

VG Compressor (Multiple compressors)

Turbo super and mechanical compounding

Torotrak V-Charge System

Van Dyne Super Turbo

Boosting Electrification

E-Turbo application

Electric turbine with an electrically or mechanically driven compressor

Two-stage system Electric turbocharger

Dimitriou, P, Burke, R, Zhang, Q, Copeland, C & Stoffels, H 2017, 'Electric Turbocharging for Energy Regeneration and Increased Efficiency at Real Driving Conditions' Applied Sciences, vol 7, no. 4, 350. DOI: 10.3390/app7040350

Boosting Electrification

System Opportunities

- Offers a low weight option for deployment of electrical energy
- Offers the possibility to recuperate exhaust heat
- Can improve transient response
- Can lead to fuel economy benefits by relaxing transient requirements of other engine features

System Challenges

- Energy flow need to be managed carefully with other systems
- Benefits are only apparent with review of full system design (not simply a retrofit)
- System needs to be designed and controlled in an optimal way

Contents

Boosting Technology

Modelling techniques

Experimental techniques

Conclusions

Simple Turbocharging

Powertrain Development

Cost & Complexity

Turbocharger/Engine simulation issues

Gas Stand Characterisation

On-engine operation

Disconnect due to:

- Pulsating flows
- Heat transfer
- Inlet/outlet pipe geometry
- Working fluid

Turbocharger Heat Transfer

Burke, RD 2014, 'Analysis and modeling of the transient thermal behavior of automotive turbochargers' Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, vol 136, no. 10, GTP-14-1108. DOI: 10.1115/1.4027290

Turbocharger Heat Transfer

2-stage System Mapping

Conventional Approach

4. Maps combined into system in 1D environment

Proposed Approach

Avola, C., Copeland, C., Burke, R. and Brace, C., 2017. Effect of inter-stage phenomena on the performance prediction of two-stage turbocharging systems. Energy, DOI: https://doi.org/10.1016/j.energy.2017.06.067

2-stage system mapping

②BACK-PRESS

*All speeds are equivalent speeds

Simulation over-estimates pressure ratio at low speed → Extrapolation on the LP map Efficiency is also over-estimated at low speed and under-estimated at high speeds

Electric boosting - Transient evaluation

Burke, RD 2016, 'A numerical study of the benefits of electrically assisted boosting systems' Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, vol 138, no. 9, 092808. DOI: 10.1115/1.4032764

Dynamic Turbocharger Maps

Identify frequency of interest

Transient characterisation experiment

Dynamic Regression model at appropriate frequency range

Contents

Boosting Technology

Modelling techniques

Experimental techniques

Conclusions

Steady flow Gas Stand

Effect of Pulsations

Advanced Mapping techniques

Closed loop compressor

Adiabatic Mapping

X-i-L testing methods — Engine/Airpath

- Turbomachinery without engine
 - Gas Stand, Engine Gas Stand
- Engine without bootsing hardware
 - Boost emulation rig

Boosting system emulation

Engine Based Gas Stand A

Engine Based Gas Stand B

X-i-L testing methods – Airpath

System based Test rig replicating air path layout

X-i-L testing methods – Airpath

- Built around a 2.2L PUMA Diesel Engine and a Boost rig
- Component level test— Turbocharger turbine & compressor & E-Booster
- Rig successfully commissioned in last week of November

Boost rig (8bar Max)

ABB flow meter (0-720kg/h)

Contents

Boosting Technology

Modelling techniques

Experimental techniques

Conclusions

Future Vision: Model Creation

High Order models and HiL testing

Parameterized low order models

HW/Control optimization in system simulation

Powertrain Development

Cost & Complexity

Acknowledgements

Some of this work was conducted with funding from the THOMSON (Mild Hybrid cost effective solutions for a fast Market penetratiON) project which has received funding from the European Union's Horizon 2020 Programme for research, technological development and demonstration under Agreement no. 724037

SCHAEFFLER

Any Questions?

Dr Richard Burke FIMechE

Powertrain and Vehicle Research Centre Department of Mechanical Engineering University of Bath Bath BA2 7AY 01225 383481

R.D.Burke@bath.ac.uk

Thanks to my colleagues Calo Avola, Qiyou Deng, Pavlos Dimitriou, Nic Zhang, Sam Akehurst

Powertrain & Vehicle Research Centre